253

Towards a theory of (self) applicative
communicating processes: a short note.

Henk Goeman, Leiden

March 1989

1 Introduction

It is possible to introduce calculi of processes which are direct extensions
of the A-calculus with several notions taken from theories of concurrency
(Process Algebra, CCS, etc.).

Such calculi combine notions of abstraction and (self) application taken
from the A-calculus with notions of (non)deterministic choice, concurrent
and sequential composition, communication, synchronisation, encapsulation
and hiding taken from the theory of concurrent processes.

In a recent paper [1] Gérard Boudol introduced such a A-calculus for
concurrent and communicating processes, where application appears as (a
special kind of) communication and where the §-reduction rule appears as
(a special kind of) a communicative interaction law.

A source of inspiration for his work was the striking, but of course in-
tentional, similarity of terms of the form Az.P representing the abstraction
mechanism in the A-calculus and terms of the form ax.P representing syn-
chronised input in CCS [2].

In this short note we will introduce an even more direct combination
of the A-calculus with concepts from concurrency, where application is not
translated to other (new or existing) primitive constructs, but is itself main-
tained as a primitive construct in the combined calculus.

We will first propose a possible syntax for such a calculus. Then we
will define a possible operational semantics for it by means of a labelled
transition system. Finally we will give several examples of process terms
which may give some flavor of the expressive power of the calculus.

Some useful comments were given by Frits Vaandrager on an early draft
for this paper.

254

2 Syntax

Let z,¥, 2, . .. denote arbitrary values from a set of symbols V = v1,vy,.. .,
let A\, u,e,0,... denote arbitrary port names from a set of symbols II=
71,72,..., and let s denote an arbitrary port renaming, i.e. an element from
[l — I]. In the following a finite port renaming may be written explicitly
as a1 > o), ap > ab,..., 0 — 0.

Now let P,Q,R,... denote arbitrary process terms from the set I' of
process terms inductively defined with the syntax

PQ,R,... :u=

z | (Az.P) | (PQ) | (AP) | (P +Q) | (PIQ) [(P; Q) | (P\A) | (Pls])-

(Az.P) is called abstraction or input on port A,
(PQ) is called application,

(AP) is called output on port A,

(P+Q) is called choice,

(P|Q) is called parallel composition,

(P;Q) is called sequential composition,

(P\)) is called restriction,

(Pls]) is called port renaming.

notation

1. outer parentheses are not written;

2. to avoid an excessive use of parentheses the following operator prece-
dences are assumed:
abstraction < choice < parallel composition < sequential composition
< application < output < restriction < renaming;

3. parentheses are also omitted as usual within a repeated abstraction
and within a repeated left associative application;

4. the symbol = denotes syntactical equality.

We have chosen for sequential composition as in ACP and for concurrent
composition, restriction and port renaming as in CCS. Of course, other
possibilities could have been chosen here as well.

255

3 Semantics

Let a denote an arbitrary action from the set of actions A, where A =
{a?P, o!lP, 7| a € I, P € T}. These actions are used as labels in a
labelled transition system in I' X A x I', generated by the following rules.
The rules use also transitions in I' x A x {nil}.

Please note that nil does not belong to I'. It should be considered as just a
virtual process, only used within the transition rules to facilitate the deriva-
tions of the real process transitions.

transition rules

1. + oacPZ8 Pz := Q]

2. PL P + az.P-Taz.P

3. PYSp + pQ P

4. PP + PQ-IPQ

5. PSP + QP-LQP

6. + aP 2Eail

7. PP + aP-ZaP

8. P-%snil F P+Q -2 nil

9. P-%snil F Q+P il
10. PP + P+Q->P
1. PP + Q+PLP
12 P20l + PIQ-%Q
13. P2l + QP-%Q

14. PEEp o2& + PQ-SP
15. P2Ep Q28pni + QPP

16. PEp Qg + PIQ-IPIQ

256

17. P2Ep Q2B¢g + QP L QP

18. PP + PQ-%P|Q

19. PP + QP->Q|P

20. P-%snil F PQ-%Q

2. PP + P,Q--P;Q

2. PSP + @QP-5Q;P

23. P%nil + P\B22ail (a#B)
2. PP + P\B-P\B

95. PP + PBEIP\B (a#8)
2%. P2 p + PBEEP\E (a#h)
2. P29l Pls) 22 il

28. PP + Pls] -2 P'[s]
29. P8 p + Ps)"R ps|

0. PO p + P52 P

We will omit here a definition of the substitution construct Pz := Q).
This construct should be defined in the usual way where clashes of free and
bound occurrences of variables are avoided by means of a suitable renaming
of bound variables (a-reduction).

Of course, several rules above may have quite different alternatives, with
very natural motivations. It all depends on the desired algebraic properties
one may want for the operations on the set of process terms modulo an
appropriate observational equivalence, much like the one defined in Boudol’s
paper [1]. Such an equivalence relation justifies also the equality symbol as
used in the next section.

Note especially how the application of a process term P to a process
term Q in the proposal above has the effect of making process P behave as
a scheduler: it sends process Q to any of its parallel subterms which has
evolved to a term with a weak head normal form.

Process application is thus indeed a generalisation of function application!

4

1.

257

Examples of process terms

Let D = pz.az.f(Qzx); 22

and O = DD = ax.f(Qz); O.

The process O represents an object:

it answers QR on port g for any request R on port a.

. Let D= pz.(fL + az.fz); 22

and K = DD = (1 + az.fz); K.
The process K represents a channel with default output L.

. Let D = puz.)y.fy; zzy + ax.zz2x

and R= DD = A\y.fy; Ry + az.Rx

then RP = 3P; RP + az.Rx.

The process RP represents a register with initial content P.
Note that cx. Rx represents a register without initial content.

. Let D = pz.az.fz + 2z; 0z

and S = DD = az.fz + S;z.
The process S represents a stack to be pushed on port o,
popped on port 8.

. Let C = Az. Ay.(z[a— 9] | ¥[8 — 7])\7-

The process C represents a chaining operator.

Such terms can be used in a very useful way as component process terms
in a parallel composition.
Note especially how the usual dichotomy between data objects and pro-
gram structures is totally absent in our combined calculus: data objects are
themselves just component processes.

References

1]

2]

Gérard Boudol, Towards a Lambda-Calculus for Concurrent and Com-
municating Systems.
In: Proc TAPSOFT’89, vol 1: CAAP (J .Dfaz,F.Orejas(Eds)), pp 149-
161, LNCS 351 (1989).

Robin Milner, A Calculus of Communicating Systems.
LNCS 92 (1980).

